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Computer searches were performed using both an 8086 microprocessor and a Cyber
750 mainframe to find repeated binary phase coded waveforms with very good matched
and mismatched autocorrelation properties. The best results for every period up to 64
are given. Sequences with optimal peak sidelobes were discovered for each of rthese
periods. These sequences have extensive applications in radar and communications,
particularly in situations when there are very unfavorable signal-to-noise ratios. The best
sequence of period 64 when processed using a mismatched filter giving no sidelobes
has a reduction in the main lobe of less than 0.23 dB.

. Introduction

This article discusses binary sequences of lengths up to 64
with very good periodic autocorrelations.

For short periods, optimal sequences are well known. For
sequence periods which equal 3 mod 4 and are prime or are
of the form 2" - 1, direct methods for finding a sequence
with, in some respects, an optimal autocorrelation are also
known.

However, for most other periods, there is no known practi-
cal algorithm for deriving optimal sequences (Ref. 1). Since
sequences of lengths of about 40 or more are too long to
be subjected to an exhaustive computer search (Ref.?2),
smaller searches must be made and practical algorithms devel-
oped which may lead to sequences with good periodic auto-
correlations.

Periodic sequences such as these have great practical value
in radar (Ref. 3) and communications (Ref. 4), especially in
situations with extremely adverse signal-to-noise ratios. These
sequences also have value in artificial intelligence, since analog
solutions and pattern recognition methods may apply and be
far superior to digital methods for finding excellent (but not
the best) long sequences. In addition, such sequences can be
used in cryptography to provide derivable “‘code books” in
situations where “‘two-key” encryption is not desired. Finally,
optimal sequences are ideal for use in searches for extra-
terrestial intelligence; not only are they easy to detect, they
also advertise current levels of technology.

One example of the use of such a sequence is the Venus
ranging experiment by MIT’s Lincoln Laboratory in 1959
and 1961. A binary “pseudorandom” shift register sequence
of period 213 - 1 = 8191 was used to determine whether to
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transmit “pulse” or “‘no pulse” in consecutive time intervals.
This sequence was very easy to synthesize and had the prop-
erty that its autocorrelation was recoverable despite a noise-
to-signal excess of many decibels (Ref. 5). Due to the diffi-
culty of analyzing an 8191-sequence, planetary ranging se-
quence periods are generally shorter (2% - 1 =255 is common)
or at least factorable. Even a sequence of period 8192 would
be relatively easy to analyze using Fast Fourier Transform
techniques. However, the computers of 1959 did not have
sufficient capability to permit the synthesis of an adequate
8192-sequence. The ranging systems used at the Jet Propul-
sion Laboratory have tended to use Boolean combinations of
several shorter sequences to facilitate rapid acquisition. The
combination is used to specify phase modulation on a con-
tinuous wave carrier; this technique requires less maximum
power output than does amplitude modulation (Ref. 5).

This article will discuss the following:

Matched Periodic Binary Sequences: A description
and example of how to evaluate the autocorrelation
of a sequence.

Calculation of Mismatched Values: A description
and example of how to calculate the main-lobe loss
when a sequence is analyzed by a mismatched filter.

Sequence Generation Techniques: A description of
the techniques used to generate good sequences.

Results: Tables of the best values f(;und, both for
matched values and those analyzed by a mismatched
filter.

Some of the values listed are “optimal”; others are merely
the best the authors have been able to obtain to date. The
main emphasis has been on finding the best value for a se-
quence of period 64 — the best previous value was improved
by over 27%.

Il. Matched Periodic Binary Sequences

A binary sequence (or binary code) is a string of bits. It
can be thought of as a vector, ¢, where each ¢, is a plus one or
a minus one. A periodic sequence is one which is continuously
repeated; for a binary sequence of period j, G TG for all 2.

The “autocorrelation,” a, of a sequence ¢ of period j is:

g = z: %k Che

J
k=1

When the autocorrelation is normalized by dividing it by
7, it is called the “‘autocorrelation function.”
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Here a, a, ay; and so forth are “main lobes,” the remain-
ing a, are “sidelobes;” @ is considered to have j “‘elements,”

one main lobe and j - 1 sidelobes.

For a sequence to have “good matched autocorrelation
properties,” it must satisfy at least one of the following
criteria:

(1) The peak sidelobe in the autocorrelation is small.
(2) The sum of the squares of the sidelobes in the auto-

correlation is small.

These concepts are illustrated by means of an example.
Consider a sequence of period 7:

ettt

To get the elements of the autocorrelation, suppose the
following:

-+
e

is the original sequence. Then
is the sequence shifted one position.

-t-t--+ is the arithmetic product for each
position. The number -1 is the sum of
these products; it is the first sidelobe
element of the autocorrelation.

Shifting by 2,

e

Fh-- -

The number -5 is the sum; it is the second sidelobe element of
the autocorrelation.

Shifting by 3,

et -+t
-+t
+o -+t

The number +3 is the sum and the next element in the auto-
correlation.

Shifts by 4, 5, and 6 positions are equivalent to those of
3, 2,and 1. The last element of the autocorrelation is the main
lobe. It corresponds to the original unshifted sequence. The
other elements are the sidelobes (the main lobe is not a side-
lobe). Thus, the autocorrelation of - - + + - + + is -1, -5,



3,3,-5,-1,7. Here P = pcak sidelobe magnitude = 5; M = sum
of squares of sidelobes = 70.

An “optimal” sequence for period 7 is + ++- - +- and
has the autocorrelation -1, -1, -1, -1, -1, -1, 7, where P =1,
M=6.

For period 8, + + + + - + - - is an optimal sequence. It
has the autocorrelation, 0, 0, 0, -4, 0, 0, 0, 8. Here P = 4,
M=16.

The remainder of this section shows the connection between
the autocorrelation and the Fourier transform.

| !/z\s a preliminary, it should be noted that g, = 4=y for
all €:
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1t is useful to have a matrix Z which satisfies a = Zc, that is:

]
=2 2t
k=1

However, the “circular convolution matrix” R of the

sequence c is actually aj X j matrix satisfying:

k=1
Since
4 1 T G
i
- § : e Ckroj-1
k=1
j
= E:ck k+1-2
k-1
ThenR

k+1 £

The ““Fourier transform” A\ of the sequence ¢, a vector
A = Dc, satisfies:

i
= E Dch
k=1
where

D = A Ue-nED

S/

exp(2mi/j)

€
I
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The sequence ¢ can be restored from A by means of the
“inverse Fourier transform’:

i
. = * *
¢ Z ka 7\m
m=1

where

A% = the complex conjugate of A,

p¥ = L yi-tk=D(m-1)

km \/]—-

The circular convolution matrix can therefore be expanded
in terms of an inverse Fourier transform:

= U I=8 D (m=1) 3
RkQ ck+1— Z 7\::1

m~1

(m~1)@-1)

J
Z (oi—(k—l)(m—l)x* w
m

Thus

R = ] D*A*D
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/\; = 6i/.)\;"
i 1 1=j
=0 iF*j

The criterion of optimality that average sidelobe response
be minimized with respect to mainlobe response means mini-
mizing

Since a? always equals j2, this is equivalent to minimizing

the sum of the squares of the sidelobes:
i~1
2
4

¢

—_

which is in turn the same as minimizing

* — ok P*
ay_oa,_, = ¢ R* Re

)

N

i i

2

Q=1 =1
= je*D¥ AP De=j % AP

This is equivalent to minimizing

J

3SR

i=1

If evaluations of sequences are to be performed on a com-
puter in a language which includes no bit manipulation instruc-
tions, calculating the \; is more efficient than evaluating the
autocorrelation. It requires j2 multiplications to calculate
the autocorrelation unless individual bits are used. To calcu-
late the N, using a Fast Fourier Transform (FFT) requires
fewer than j (log, j) operations. However, in an assembly
language, a maximum of j + (j/word length) logical operations
are needed to replace the j2 multiplications in calculating the
autocorrelation.

When calculating the A, it is helpful to check the normali-
zation. By Parseval’s theorem:
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lIl. Calculation of Mismatched Values

When sequences are used for ranging, they are phase coded
rather than amplitude modulated. Since the signal-to-noise
ratio (SNR) is expected to be very low, it is generally favorable
to use maximum amplitude throughout; amplitude modula-
tion would be inconsistent with this requirement. Similarly,
periodic rather than aperiodic waveforms are generally used
to increase the redundancy of the information. A single
(aperiodic) sequence uses 27 bits to transmit only »n bits of
information (the information transmitted being the displace-
ment of the starting point of the sequence). However, a
repeating (periodic) sequence uses m X 2" bits to transmit
the same information, where m is the number of repetitions
which are processed (whether this is truly the best way to use
m X 27 bits to transmit n bits of information in a noisy envi-
ronment is not the issue).

The detection procedure is equivalent to comparing the
incoming signal to a template consisting of the original se-
quence and ‘“moving the template around” until it matches
the signal. In this situation the autocorrelation is the “output”
of a “matched receiver.”

Although the signal is not amplitude modulated, the
template may have some amplitude modulation. The incoming
sequence is then no longer correlated with itself but with a
similar “weighted” sequence. By varying the amplitude of each
bit in this template sequence, the sidelobes can be reduced or
even eliminated.

The cross-correlation, x, of two sequences, b and ¢, each of
period j is:

Let ¢ be a binary sequence which is to be cross-correlated
with b, a sequence composed of real numbers. Sequences ¢
and b are related by the “weighting function” ¢.

In this case, b can be considered a “mismatched filter” to
¢. To normalize this mismatched filter:

J
> o
=1



For a given sequence, there usually exists a mismatched
filter which can be used to mathematically operate on the
sequence so as to reduce all the sidelobe values to zero. For
j > 4, however, the main-lobe value will also be reduced some-
what. The sequence with the best mismatched (cross-correla-
tion) properties is the one which has the smallest decrease in
main-lobe value and therefore has the smallest ratio of

The circular convolution matrix R for mismatched

sequences is:

J
- E Riq by

k=1

The average-to-peak cross-correlation response is then:

Minimizing the above is equivalent to minimizing

b* RR* b
bEcc* b

which occurs when
b=(RR*y ¢

=L pe [A 2 De

~.

This gives b, proportional to
Z kQ F

This choice of b zeros the cross-correlation (Ref. 5). The only
constraint necessary for RR* to be nonsingular is that |\,|2 >0
for all 7, i.e., that RR* is positive definite.

The best sequence is the one which minimizes

In practice, smaller weights may be chosen to reduce the
SNR loss. In this case, the sidelobes will be reduced rather
than eliminated.

The following example illustrates the derivation of the
appropriate mismatched filter for a given sequence.

Consider the sequence of length 8 discussed in the pre-
vious section. The sequence + + + + - -+ - - has autocorre-
lation 0, 0, 0, 4, 0, 0, 0, 8, where P = peak sidelobe mag-
nitude = 4 and where M = sum of squares of sidelobes = 16.

It will be shown that when this sequence is analyzed with
the appropriate mismatched filter, b, the cross-correlation
becomes (0,0, 0,0,0,0,0,x,).

The elements of the mismatched filter, b, , must be norm-
alized so that

1 8
2
—_— = 1
5 2 b
k=1
in order to obtain the correct value ofx]..

The loss in SNR for the mismatched filter is then L =
(8/x/-)2 . To actually calculate L:

el
Iy

k=1

where the A, are elements of the Fourier transform of the
original sequence:

] M1 11 11 1 1 ] [1]
?\2 1 w i ~w* -1 -w - w* 1
A, I 1
AL \/T 1 —w* - w -1 w* I -w 1
A 811 -1 1 -1 1 -1 1 -1 -1
)\6 1 -w i wF -l w - ~w* 1
?\7 1 - -1 i 1 - -1 i -1
)\8 1 w* -l ~w -1 -w* I w -1
L J i d u J
where

i = /-1 =exp(in/2)

w = T =exp (in/d) =1 +D)IV2
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M 2 7
21+ - V2 (-0
2
A= 1 2(1-0) + V2 (1+0)
° -2
2(1+0) + /2 (1-0)
~2i
12(1-D) - V2 (1+D) |

Thus

K =—é(4,12,4,12,4,12,4,12)

L 003,2,203,2,213,2,2/3)
e
8
1 1
L = =
8 Z N
= L (8+8/3)
! :
= 4/3
= 1.3333

The loss in dB is 10 log,, (1.3333)=1.250 dB.

For this particular case, the mismatched filter elements
can be found by inspection. They also can be calculated as
follows:

J . )\k
bi & E Dik 2
|

where D:fk is the inverse Fourier transform.

There is no need to normalize the b, at this point; it can
always be done later since

The filter b is proportional to
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I 6 1 T[]
200+40) - V2 (1 -1) 3
[ A | 6 1
A1-0 +V2U+n | =81
1 -1 1 -1 1 - 1 -1 -6 -1
AL+ + V2 (1-0) 3

[ -1 - | -1 - -6i -1

201 -y - \/Z—(I#i)J "J
With b properly normalized:

b = 1—(1,3,1,1,_1,3,.1,-1)
V3

It is easily verified that the cross-correlation of
(1,1, 1,1,-1,1,-1,-1)

and

1 (1,3,1,1,-1,3,-1,-1)
V3

(0,0,0,0,0,0,0,4 /3)

IV. Sequence Generation Techniques
A. Iterative Improvement

The basic concept in deriving a good sequence is to start
with an arbitrary sequence of period j and perturb one bit of
the sequence to create a new sequence. Then the criteria of
optimality developed in the previous section are used to
decide whether the new sequence is superior to the old one.
If the new sequence is inferior, a new bit of the old sequence
is perturbed; if the new sequence is superior, it replaces the
old sequence and is itself then modified by one bit. Eventually
a “locally optimal” sequence is thus obtained. A new initial
sequence is chosen, and the procedure is repeated as often as
desired. '

Perturbing a sequence by 2 bits or 3 bits was also tried;
it yielded significantly inferior results to 1-bit modifications.

It may appear that one should look at, say, all /.C4 se-
quences which vary by four bits from the best sequence



obtained by iterative improvement once one-bit, two-bit, and
three-bit modifications have failed to improve it rather than
abandon the sequence and start over. Certainly, it can not
hurt to apply this technique to the best sequence ever found.
However, in general, the time spent in an often futile attempt
(via 4-bit modifications) to improve one already “locally
optimized” sequence could be better spent by locally opti-
mizing a thousand new sequences from scratch.

The iterative procedure also produces good sequences
faster than does an exhaustive search. For j = 43, at least one
out of every 107 sequences examined had M = 42; for an
exhaustive search, only one out of every 10%0 sequences
would have that value. Even if the exhaustive search exam-
ined sequences only when

/

=1

only one of 10% sequences would have M = 42. An actual
exhaustive search might be restricted to sequences beginning
with two or more +1’s followed by a -1; this would not
increase the rate of finding M = 42 sequences. '

The best results were obtained by minimizing M, but good
results should also be obtainable by minimizing L. When
iteratively improving a sequence by calculating L, one need
not continually recalculate the sum in

/
Ay = Z Dy <
k=1
It element ¢, of the original sequence is to be perturbed,
the new Fourier transform elements, 7\;2, are always simply:

Ay = A, 22D =N+ (2/Vi) exp Qui(n- 1) (€ - i)/)j)

which is noticeably more efficient, especially when j is prime
so that an FFT does not help.

It is also possible to modify a sequence iteratively by noting
which elements of the Fourier transform are farthest from
unity and then perturbing the appropriate bit or bits in the
sequence to improve these worst values of A..

B. Choosing an Initial Sequence

Since numerous sequences were to be chosen, an important
criterion was to avoid accidentally repeating initial sequences.
This was done by making each 4-bit “nibble” of the first
initial sequence different and then systematically changing
the sequence of nibbles. Rotations of initial sequences are

unlikely to give identical results after iteration (but ones
complementation will). Thus for j = 64, this procedure can
supply 16!/2 > 10'3 initial sequences while for j = 48 it gives
16!/(2 X 41)> 4 X 10! initial sequences.

Attempts to improve on the choice of initial sequences by
modifying sequences of periodsj £ 1,7 4,2, il2,jl4, N/
j, tJ, =], and so forth (where the unmodified sequence had
good autocorrelation properties) did not yield better results.
It is also difficult to synthesize a large number of such initial
sequences.

It may seem that a minor modification of a sequence with,
say,j = 1023 and M = 1022 will give a good sequence with
j = 1024; this is simply not true. An even worse idea would
be to create a j = 1023 sequence with a shift register and then
pretend it has j = 1024 and analyze it with a Fast Fourier
transform.

C. Methods of Finding Good Sequences
by Inspection

1. Quadratic residue sequences. For odd prime periods, /,
one forms a quadratic residue sequence by setting to -1 all
elements ¢; for which i = n? mod j for some integer n < j/2.
The remaining elements are set to +1. These sequences give
M =7 -1 (always optimal) for j = 3 mod 4. For j = 1 mod 4,
half of the g4, equal +1 and the remaining 4; are -3, thus M =
5(j - 1) which presumably is never optimal, merely good.

For example letj = 11. Elements 1,4,9.5 =16 mod 11,
and 3 = 25 mod 11 are set to -1. The remaining elements are
+1. This gives a sequence with M = 10.

An integer [ is a quadratic residue modulo n if m? =1
(modulo 7) has a solution for some integer m and (/, n} = 1.
When p is an odd prime, the Legendre symbol ({/p) is defined
as:

(1) _ | 1ifIisa quadratic residue modulo p

p/ | -1 otherwise

For this reason, quadratic residue sequences are also referred
to as Legendre sequences.

Quadratic residue sequences always have sums

j
]
i=1

As will be shown later, such sequences do not have good
mismatched autocorrelation properties. It would be more
useful to discover an algorithm (if one exists) to produce the
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P = 3 sequences with sums of %7 that dominate Table 2 for
i =1 mod 4 rather than use quadratic residue sequences with
P =3 and sums of *1.

2. Double prime sequences. For periods, j, which are the
products of two odd primes: j = /’1]'2 where j2 > /1’ one can
synthesize “double prime” sequences. These sequences are
called “twin prime™ when j, =7, + 2. Twin prime sequences
are always optimal, with M = j - 1. Double prime sequences
are based on the Jacobi symbol [//j] where = j]j2 and

7 ()6

For double primes, one sets to -1 all elements ¢; for which
(i, /) = 1 and [i/j] = -1 as well as those for which (i, j) # 1
and i = 0 mod /,. The remaining elements are set to +1. For
example, let j = 35. For (7, /) # 1 and i = 0 mod 7, elements
7,14, 21, 28, and 35 are set to 1. For [i/j] = -1 elements 2,
6, 8, 18,19, 22, 23, 24, 26, 31, 32, and 34 are set to -1. The
rest of the elements are +1. This gives M = 34.

For j2 = ]'1 + 4, this method gives sequences with autocor-
relation element values exclusively of 1 and -3, which are
presumably good but not optimal. Forj, =/, +6, the method
gives autocorrelation element values exclusively of -1, +3,
and -5, which are not necessarily even good.

Triple prime sequences can also be generated using the
Jacobi symbol. The first one with three odd primes has j =
105, a period which is not investigated in this paper. In addi-
tion, it is not manifest that such a sequence should be good,
let alone optimal.

3. Shift register sequences. Forj = 2" -1, a “shift register”
sequence can always be created with M =j - 1. For example
let j = 15 = 2% - 1. Then one must find an irreducible poly-
nomial of order 4 such as:

P +1 =0

with a recursion of

where addition is mod 2. Applying this recursion to 0011
gives 001101011110001 which, when one replaces the 0’s
with -1’s, has M = 14.

These sequences are produced by “shift registers” which

are devices of n consecutive binary storage positions which
shift the contents of each position to the next position down
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the line at regular intervals. To compute the new first posi-
tion, a mod 2 sum of the contents of some of the previous n
positions (n = 4 in the above example) is used.

For j < 127, a recursion relation for j = 2" - 1 can always
be found of the form:

where 0 < £ < n, which gives a sequence with M =/ - 1.

4. Multiplication of sequences. When one multiplies two
sequences of relatively prime periods bit by bit, their auto-
correlations are also multiplied, element by element. Thus if
sequence ¢, with autocorrelation a, is formed by multiplying
the sequences d and e, with autocorrelations u and v respec-
tively, then

o
I
I
)

and

If e is optimal (P = 1) with some odd prime period j, = 3
mod 4 and d is optimal (P = 0) of period 4, then ¢ has period
J, =4, and M_ =16 ¢, -1)=4j - 16. For example if d is
+++-,andeis+ + + - - + - then write d as

(F4++-F4++-++t4-t o FE bt

and e as

I e e e e

Then c is

(F4++-t -ttt F - )

To get the autocorrelation:
u=(0004000400040004000400040004)

vE(-1-1-1-1-1-17-1-1-1-1-1-17-1-1-1-1-1
A7-1-1-1-1-1-17)

So

a= (000-4000-4000-4000-4
000-4000-400028)



An M = 192 sequence for j = 52 can be obtained by mul-
tiplying the 4 and 13 sequences. The 4-sequence, d, is: d, =
1, d2 =1, d3 =1, d4 = -1, and di = di_4. In hex notation,
replacing the -1 by a 0, this is E. Repeating this thirteen times,
d = EEEEEEEEEEEEE. The 13-sequence, Y, is, in hex nota-
tion: 1F35. Repeating this four times, y = FOAFCD7E6BF35.
Then z, = dy; gives z = ESBEDC6F7AE24 which has M =192
as well as an L equal to that of the 13-sequence, namely 1.040.
The “exclusive nor” (the ones complement of the “exclusive
or’’) operation is used to perform this multiplication in hex
notation.

5. Golay sequences. There is another method to obtain an
M =192 sequence forj = 52.

Let y = FOAFCD7E6BF35, as before. Then let

d =1 1<i<26
d = -1 27<i<39
d =1 40<i<52

In hex, d = FFFFFFCOO1FFF

z, = dyy, now gives z = FOAFCD4195F35

which is a sequence of the form SSSS where each S is a
sequence of length 13. The sequence z has L = 1.050. Se-
quences of the more general form § 8,8, S, are called Golay
sequences. Sequences of the form SSSS do not generally
have the property of producing good autocorrelations. How-
ever, they do have the property that, when S is of length &,
the first £ = j/4 sidelobes on either side of the main lobe are 0.

D. Demonstration of Equivalence

Two sequences which are equivalent always have the
same M value (the converse is not true). Two sequences,
¢ and d, can be shown to be equivalent, ¢ ~ d, as follows:

(1) e~c.

(2) Ifc~eande~d, thenc~d.

3) Ifc~d,d~ec.

(4) If¢,=-d forallithenc~d.

(5) If¢,=d,, , foralliand some £, then ¢ ~ d.

(6) If ¢, =d,, , forall i and some k where (i, k) =1, then

c~d.

As a special case, when k =/ - 1, ¢ = d}.ﬂ., a “mirror image”
sequence,

When an exhaustive search is made, only one sequence
from each equivalence class need be examined: an efficient
algorithm for performing such a search is not known.

One method for restricting a search to a small number of
members of each equivalence class is to examine only se-
quences beginning with several +1’s followed by a -1, it is
not evident that any significant advantage can be obtained in
this manner, however.

E. Proof of Optimality

All of the best values of P discovered for each j as well as
a number of M values are given as optimal. Most of the proofs
of optimality are trivial and based only on the fact that when
j = N mod 4, each element of the autocorrelation is also V
mod 4. For example, when M =/ - 1 for odd j, one may be
sure that no smaller value of M can be obtained. Similarly,
M = 4(j - 1) must be optimal forj =2 mod 4.

Other useful facts for proving optimality are:

(1) No sequence of j > 4 has P = 0 (Ref. 7).
(2) No sequence of j > 13 andj =1 mod 4 has P = 1.

. . 2
J 7
(3) Z a; = Z cl.)
i=1

=1

This latter equation is easy to derive. Suppose ¢, has i 1’s
and ¢ -1’s where A + £ =j. Then

J

Eci=h—Q

i=1

To find the autocorrelation sum, it is sufficient to realize that
every element of the sequence will be multiplied by 4 1’s and
£ -1’s; thus,

J

Eai = (h-9)?

i=1

F. Examples of Optimality Proofs

To illustrate methods of optimality proofs, two examples
are given

1. Proof for j = 36. The period j = 0 mod 4, so each a, must
be O mod 4
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The right hand side of the above equation is an even square
(0,4,16,36,64,100, .. .). The left hand side is

35
36 + Z a,
=1

Thus either
35
Z a.l =0
1
i=1
or
35
Z a | > 20
i=1
If

then M = 80. If

then either every a; = 0, which is impossible, or some la,| = 4.
In this case ¢_, = a; gives two equal deviations from zero
(unless j — i = i) which can be negated only by two other
elements of the autocorrelation. With 4 nonzero elements,
M = 64. If j - i = i, then this deviation from zero must be
negated by two or more elements of the autocorrelation; thus

M= 82 +42 + 4% = 96. So M = 64 is optimal.

2. Proof for j = 41. The period j = 1 mod 4,s0 each a,
must be 1 mod 4.

41 41
E a, =
i

=1 i=1

The right hand side is (1,9, 25, 49, 81, . . .); therefore

40
4] + Z a;
i=1

equals the right hand side (RHS). If RHS = 81,4045 =1 give
M =40 and P = 1, which is impossible. If 36 as = 1,2 a5 = -3,
and 2 as = 5, then M = 36 + 18 + 50 = 104. If RHS = 49,
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32as=1and 8as=-3giveM=32+72=104. 1t RHS =121,
30as=1and 10 as = 5 give M = 30 + 250 = 280. These are
the minimum deviations from all ¢, = I for the RHSs closest
to 81. Thus M = 104 is optimal.

G. Further Evidence of Optimality

Evidence of optimality can also be obtained even when an
exhaustive search has not been performed and a proof attempt
indicates that lower values of M may be possible. Whenj = 44,
for example, 2** sequences are possible. However, as our
discussion of equivalent sequences has shown, if one sequence
has a given M value, so do a number of others:

44 rotations
X 2 +/- interchanges

X 20 modifications by taking every nth element where
44,n)y=1.

This appears to give 1760 sequences with the same autocor-
relation properties. However, some of these sequences are
identical, so the number of equivalent sequences is less than
1760. Nevertheless, for some values of M, more than 2'°
equivalent sequences with a given M value must exist if any
do. So roughly every 10 billionth sequence would have that
value. If anywhere near that many sequences were examined
iteratively without finding a given M value, it would strongly
suggest that either no sequence giving that value existed or
that such a sequence could not easily be derived by iterative
one-bit modifications of better and better sequences.

When the M-value is underlined in Table 2, the authors feel
that no better value exists. When no proof of optimality
exists, the best evidence for this is the accumulation of a large
number of sequences, many of which are equivalent, of that
value. When one hundred sequences of M = 144 forj = 44 are
found but none of M < 144 are discovered, there is consider-
able circumstantial evidence that M = 144 is optimal forj = 44.
On the other hand, M = 112 forj = 60 may seem very surpris-
ing. Prior to the discovery of such a sequence, one might be
excused for believing that no such sequence will be found.
Yet, when one or two sequences with M = 112 are discovered,
the evidence against a sequence with j = 60 and M = 80 or 96
is not overwhelming. Thus, the authors have decided not to
underline a value for M in the table unless at least 30 sequences
with that M have been discovered independently.

Of course, this criterion is no guarantee of optimality. For
example, for j = 43, thirty sequenceés with M = 138 were dis-
covered prior to the appearence of a lower value (M = 42).
The generation of P = 1 sequences forj =43 andj = 47 by the
iterative method in less than 30 minutes of Cyber processing



time also indicates that the M-values listed for j <47 are likely
to be optimal.

H. Ratio of Ones to Minus Ones

As can be seen from the preceding section, the best
sequences have

2

IR

=1

(the DC Fourier element)

7
=S~

i=1

for best results. Thus one expects that the best codes of
j =~ 64 will have

j
Zc. = 8
I
i=1
For a period of 64, this gives 36 1’s and 28 -1’s (or vice versa).

Robert Keston has pointed out that if one splits such a
J = 0 mod 4 sequence, ¢, into two sequences, f and g, where

1]
~

f; “2i-1
& T 4y

then either f or g should have an equal number of 1’sand -1’s
(R. Keston, personal communication, May 1984).

This can provide assistance in selecting initial sequences or
discarding unwanted sequences.

If one is looking for a particular value of M for a given j,
it may be helpful to look at the properties of the 4, and ¢,
that must be satisfied. For example, at one time the best
known M for j = 48 was 112. It was hoped that an M of 96
could be obtained. To accomplish this, one must have:

()

i=1

2

[\/J

1]

16,36,64,100, ...

RHS

But |RHS - 48| > 24 would mean M > 96 so only RHS = 36
or 64 are possible. For RHS to equal 36, there must be an
odd number of fours in the autocorrelation; this can not give
M = 96. Also, RHS = 64 cannot work with 6 fours, since
5 of them, including the middle element would be positive and
one (the middle element again, which is impossible) would be
negative. So the only sequence which works must have an
autocorrelation with +8 in the middle and a +4 on either side
so that 48 + 8 + 4 + 4 = 64, The sequence itself must have
either 20 or 28 1’s. If one takes every other element of the
sequence, one will get 8, 12, or 16 1's. These restrictions could
make it easier to hunt for such a sequence. Luckily in this
case, even without using them, there was ample time to find a
sequence with M = 96.

. Sequences With Good Matched but Poor
Mismatched Autocorrelation Properties

Sequences with excellent mismatched autocorrelation
properties generally have very good matched autocorrelation
properties. The converse is not true and is most typically
false for quadratic residue, double-prime or shift register
sequences. The reason is that for such sequences,

Supposej =63. Then

)\1 = _1_
V63
L6
A
Using Parseval’s theorem:
63

Thus
63 1
2 - -
2N =635
=2
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At best, all the A, for 2 < i < 63 are equal. Then each of
these

)\iZ:l(63_-1_):§i

62 63 63
So
T L -y X636
i

Therefore the L value is, at best, 63/32 = 1.96875, which is
very poor. The L value of the shift register sequence with
j =63 and M = 62 in Table 2 actually is 63/32; the remaining
Fourier components are equal.

By the above argument the best possible L value for a shift
register sequence of j = 2" — 1 is:

2% .1
21”1'—1

L=

Unless # is small, I, = 2, or about 3 dB.

The DC component of the Fourier transform, greatly
elevated due to the near equality of 1’s and -1’s in the se-
quence, always produces an L value which represents roughly
a 3 dB loss in signal; this compares very unfavorably with the
0.15 dB to 0.25 dB losses corresponding to some of the
sequences with better ratios of 1’s to -1's. Sequences of
period 4/ formed by multiplying an L = 1 sequence of period
4 by a shift register sequence are no better, as the L-value of
the sequence with period 4j equals that of the sequence with
period ;.

This provides another incentive for not investigating shift
register sequences exclusively. Not only is it a nuisance to
analyze such sequences; in addition their autocorrelation
properties are, in some respects, not very good.

John Bailey has offered a solution to this problem; eli-
minate the DC component. One method would be to have
+1 and -1 be out of phase by other than 180° (Ref. 8).

For a two phase sequence the modification is:

Element of
Modified Sequence

Element of
Shift-Register Sequence

+1 +1

-1 -exp if
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where

[\

7)

8= tan”! (
-1

~—.

For example, it the unmodified sequence is
Ft - -
then the modified sequence is
¢ =(1,1,1,-expiB, -expif, 1, -expif)
For complex elements, the autocorrelation is:
S
0 =Y o
k=1
In our example, a, =7
a, = 3 -2 (expiB) -2 (exp - if)
= 3-4cosf

for 1 <2< 6 where

WS

oo

tan25+1 = c032B =

cos? B

Putting § in the first quadrant, cos = 3/4,s0 g =0forl1<¢
< 6.

In general, whenj = P

- i+
a, =% -]ql cos
for I <& <j. Thus
tan § = Y
(G-1?
and
: 2
cos? B = G-1)
G+1)?



which, with § in the first quadrant, gives

a, = 0

¢ (2+# 0 mod )

One could also derive a 3-phase sequence as a product of two
2-phase sequences:

Element of
Modified Product

Elements of
Unmodified Sequences

1 1 1
-1 -1 1
1 -1 -exp (-iB)
-1 1 -expif
Once again,

g = tan”~ ! (i]—)

j-1

If one wishes to zero all sidelobes without a decrease in
SNR, one can also letj = 22N and create a sequence with\/7
phases; a complete discussion of this would be too far afield
of the topic of binary sequences.

V. Results

Table 2 shows the best sequences for periods 28 to 64 for
both matched and mismatched cases. Table 1, showing the
results for periods 3 to 27 (Ref. 9) is included for
completeness.

In Table 2, the heading j gives the period (length) of the
sequence; P gives the lowest value of the peak sidelobe; M gives
the lowest sum of the squares of the sidelobes discovered for
any sequence of period j. When the sequence with the optimal
peak sidelobe has a higher M, both values are given. When two
references are given on the same line, the first one refers to
the matched sequence and the second one to the mismatched
sequence. A reference of “X” refers to this article.

When the value for P, M or L is in parentheses, the authors
feel that a better, but as yet undiscovered, sequence may
exist. When the value is underlined, it is unlikely that a better
value exists. In all other cases, the value can be proved to be
optimal. All values for P are optimal unless two values are
given for a specificj, in which case the lower one is optimal.

The sequences are written in hex notation. The first bit is
always a plus sign. For example, the sequence for 29 is given
in hex as 14A7C111. In binary this would be 0001 0100 1010
0111 1100 0001 0001 0001. By replacing O with a minus
sign, and 1 with a plus sign, and removing the leading zeros,
we get the sequence:

e o o e s
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Table 1. Best matched and mismatched sequences for periods 3 to 27

Matched Sequence

Mismatched Sequence

j P M Sequence, hex L Sequence, hex
3 1 2 4 1.5000 4

4 0 0 1.0000

S 1 4 1E 1.1111 1E

6 2 20 25 13125 28

7 1 6 4B 1.5400 40

8 4 16 CB 1.3333 E3

9 3 24 1F4 1.6650 104

10 2 36 350 1.6761 25D

11 1 10 716 1.2909 67A

12 4 16 941 1.1250 941

13 1 12 1F35 1.0400 1E6B

14 2 52 36A3 1.2153 27FS

15 1 14 647A 1.1520 698F

16 4 48 FAC4 1.2589 EEDS8

17 3 64 19A3D 1.2165 1128E
18 2 68 31EDD 1.2843 21419
19 1 18 TA86C 1.1119 465D0
20 4 64 F6ESE 1.1111 C5640
21 3 52 117BCE 1.1097 170848
22 2 84 3D1231 1.2178 28312B
23 1 22 6650FA 1.1114 7CEA2D
24 4 32 DC20D4 1.0607 C3DEA6
25 3 72 18B082E 1.1195 128COBC
26 2 100 2C1AEB1 1.1240 34AFBC9
27 3 74 5A3C444 1.0965 7D3472B
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Table 2. Best matched and mismatched sequences for periods 28 to 64

Matched Seqeunce

Mismatched Sequence

j P M Sequence, hex L Sequence, hex Reference?
28 4 80 B30FDD4 1.1305 F3DDD21 9,10
29 3 92 14A7C111 1.1384 14A7C111 9

30 2 116 3FAD938A 1.1260 3FAD938A X

31 1 30 4B3E3750 1.0898 45C2D660 11,10
32 4 80 89445BC1 1.0950 89445BC1 10
33 3 64 18A5C240D 1.0656 18A5C240D 9

34 2 132 29D3BB82D 1.1337 29D3BB82D 10
35 1 34 71F721592 (1.0732) 722B92F3E 11, X
36 4 64 F397A6517 1.0455 F397A6517 9

37 3 84 1BD623E3B6 1.0771 1BD623E3B6 9

38 2 148 302162B8B6 1.1085 302162B8B6 10
39 3 86 60CD4F47BE 1.0528 60CDA4F47BE X

40 4 80 DBY9EAEOSBC 1.0575 DBI9EAEOSBC 9

41 3 104 1079731045A 1.0723  1079731045A 10
42 2 164 2CF51397B7C (1.0523) 2CF51397B7C X

43 1 42 653BE2E08D6 (1.0786) 5189822FC34 11, X
44 4 144 AFDEBAF8665 1.1022 AFDEBAF8665 9

45 3 124 17473C9BFADO 1.0667 17473C9BFADO 9

46 2 180 2A2818CDBC16 (1.0842) 2A2818CDBC16 X

47 1 46 421A8D93A9EF (1.0727) 795220A780EC 11,Y
48 (8) 9 998G3C312AB6 1.0375  99803C312AB6 X

48 4 (112) CBF089223A51 9

49 3 (144) 1C0B504676CBO (1.0799) 1COB504676CB0O X

50 2 196 236D4FF70651E (1.0984) 236D4FF70651E X

51 3 (146) 6DSDECF8433ES8 (1.0704) 6DSDECF8433ES8 X

52 4 (128) FDEE871D85B44 1.0400 ES8BEDC6F7AE24 X

53 3 (164) 11CAA3E46F7B6S5 (1.0706) 11CAA3E46F7B6S X

54 2 212 3917B588A2C302 1.0826 3917BS588A2C302 X

55 3 (214) 7BCFB32717D0AS (1.0837) 7BCFB32717D0AS X

55 (5) (182) 7F0AA13316DC34 X

56 4 (208) 852659EBA181B8 (1.0993) 852659EBA181B8 X

57 3 (184) 16A38C8BC7FDI1AD (1.0637) 16A38C8BC7FD1AD X

58 2 228 3B64AAF8FDCES20 (1.0896) 3B64AAFS8FDCES20 X

59 1 58 5D49DE7C1846D44 (1.1003) 6CF43BE8A12CF9ID 11,2
60 4 (112) EC757781362D6F9 (1.0352) EC757781362D6F9 12

61 3 (204) 1481F734DC7EEA74 (1.0624) 1481F734DC7EEA74 X

62 2 244  225746DC62583D20 1.0638 225746DC62583D20 9

63 1 62 4314F4725BB357E0 (1.0830) 408AB703D6597390 11,13
64 4 (240) B24FEAETE4529CF0O (1.0538) CD9BFFOE16D2AB98 Z2,X

3 X Refers to this article.
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